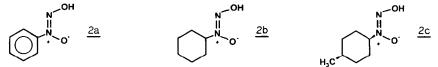
"ISONITRAMINES": NITROSOHYDROXYLAMINES OR HYDROXYDIAZENIUM OXIDES?

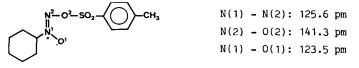

E. Hickmann^{*}, E. Hadicke and W. Reuther BASF Aktiengesellschaft, 6700 Ludwigshafen, W. Germany

Summary: In the crystalline state and in solution isonitramines are hydroxydiazenium oxides.

It is generally accepted today¹ that isonitramines² must be described by the nitrosohydroxylamine structure 1^3 rather than the isomeric hydroxydiazenium oxide structure 2^4 :

$$R - N \bigvee_{OH}^{N=O} \frac{1}{2} \qquad R - N \bigvee_{O}^{N-OH} \frac{2}{2}$$

We now present evidence⁵ that three isonitramines investigated by us ($\underline{2a}$: R = phenyl⁶, <u>2b</u>: R = cyclohexyl⁷, <u>2c</u>: R = <u>cis</u> - 4 - methylcyclohexyl⁸) correspond to structure <u>2</u>:


This structural assignment is based on X-ray structure analyses performed with single crystals of $\underline{2a}$ and $\underline{2c}$ and on UV and 13 C NMR spectroscopic data obtained from solutions of $\underline{2b}$ and $\underline{2c}$.

X-ray structure analyses of 2a and 2c

X-ray intensity measurements⁹ were performed with single crystals of <u>2a</u> and <u>2c</u>¹⁰ cooled to -60 ${}^{\circ}C^{11}$. The structures were determined by direct methods, and all hydrogen atoms were located in difference maps¹². Refinement proceeded until R = 0.045 (<u>2a</u>) and R = 0.053 (<u>2c</u>)¹³. The structures found by these analyses¹⁴ are shown in the Figure below.

In both isonitramines all atoms of the N_2O_2H groups are coplanar. In <u>2a</u> the dihedral angle between the aromatic ring and the substituent ("best planes") was found to be 3.4° . The <u>cis</u> - 1,4 disubstituted cyclohexane derivative <u>2c</u> is fixed in the (1a, 4e) - conformation.

<u>2a</u> and <u>2c</u> both have N(1) - N(2) double bonds. The N(2) - O(2) bonds¹⁵ are considerably longer than the N(1) - O(1) bonds. Similar bond patterns were found in the diazeniumdioxy tosylate $\underline{3}^{16}$ by X-ray structure analysis⁵:

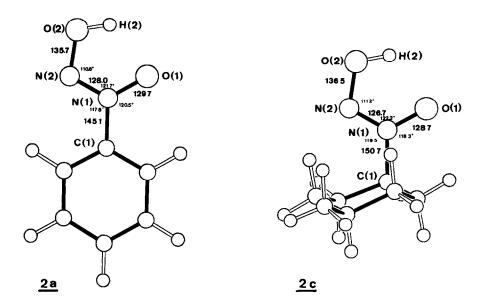
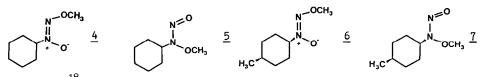



Figure: 2a and 2c with relevant bond distances and bond angles

These findings rule out the nitrosohydroxylamine structure <u>1</u>. They prove that the isonitramines <u>2a</u> and <u>2c</u> exist as (Z) - configurated hydroxydiazenium oxides in the solid state.

UV and ${}^{13}C$ NMR spectroscopic analyses of <u>2b</u> and <u>2c</u>

For structure correlations by UV and 13 C NMR spectroscopy the 0-methyl derivatives of <u>2b</u> (<u>4</u> and <u>5</u>) and of <u>2c</u> (<u>6</u> and <u>7</u>) were prepared 17 :

UV spectra¹⁸ of solutions of <u>2b</u> and <u>2c</u> (in cyclohexane, diethylether, acetonitrile, ethanol), and of <u>4</u> and <u>6</u> are similar and show $\pi - \pi^{*}$ absorption bands only (see Table).

compounds	$\pi-\pi^{\circ}$ UV bands		$n-\pi^*UV$ bands		¹³ C NMR chemical shifts (ppm)					
	$\lambda_{_{\rm HII}}$ (n=)	€∎	$\lambda_{m}(nm)$	€ ∎	ring carbon atoms				C-methy1	0-methy1
					C(1)	C(2.6)	C(3,5)	C(4)		
<u>2b</u>	228,5	7200	•	-	71.1	30,1	24.4	25.0		-
4	234.8	9180	-		72.5	30.6	24.7	25.2	-	60.2
5	235.8	6050	354.9	71.4	63.9	30.8	25.2	25.3	-	63.5
<u>2c</u>	228.3	6360	-	-	69.2	29.9	26.6	29.5	20,1	-
6	235.2 10	8700	- 10	-	70.9	30.0	26.6	28.7	19.5	60.1
Ī	235.2 (235.4) ¹⁹		(354.5) ¹⁹		62.3	30.5	26.9	29.3	19.6	62.9

Table: Spectroscopic data of 2b and 2c and their O-methyl derivatives

UV: ethanol solutions; ¹³C NMR: benzene solutions, shifts relative to internal TMS

<u>5</u> and <u>7</u> exhibit the n- π ·bands of the N-nitroso groups²⁰ in addition to the π - π ·bands. Analogous observations have been made with methylene disconitramine (Traube's compound²) and its 0-methyl derivatives^{21,22}.

The absence of $n-\pi$ bands in the UV spectra of isonitramines has been tentatively attributed to intramolecular²¹ and/or intermolecular²³ hydrogen bonding in <u>1</u>. Since structure <u>2</u> would also fit the UV data ¹³C NMR spectra²⁴ were taken in order to obtain additional information. As follows from the Table the same two groups of compounds found by UV spectroscopy are also observed by ¹³C NMR spectroscopy: The resonance signals of the N substituted ring carbon atoms C(1) of the isonitramines <u>2b</u> and <u>2c</u> occur close to the corresponding signals of the diazeniumdioxy compounds <u>4</u> and <u>6</u>, respectively. In contrast, the signals of C(1) of the nitrosohydroxylamines <u>5</u> and <u>7</u> are considerably displaced to higher fields.

The small differences in shift (1.6 to 1.9 ppm) between the cyclohexyl derivatives $\underline{2b}$, $\underline{4}$ and $\underline{6}$ and the corresponding $\underline{cis} - 4$ - methylcyclohexyl homologs can be explained in terms of a significant contribution of the (1a, 4e)- conformer in the conformer equilibrium²⁵ of the latter ¹³C NMR spectra of $\underline{2b}$ and $\underline{2c}$ exhibit narrow lines when taken at room temperature (methanol solutions). When measurements are performed at -70 °C line broadening is observed in the spectrum of $\underline{2c}$ only. Since freezing of the tautomer equilibrium $\underline{1} = \underline{2}$ should occur with both isonitramines the observed line broadening must be attributed to freezing of a conformer equilibrium²⁶ (1e, 4a) == (1a, 4e).

We conclude that the UV and ¹³C NMR data of the two isonitramines investigated in solution are both compatible with the hydroxydiazenium oxide structures <u>2b</u> and <u>2c</u>.

<u>Acknowledgement.</u> We thank Dr. W. Bremser of BASF Aktiengesellschaft for help with the interpretation of the NMR spectra.

References and Notes

+) Dedicated to Prof. Dr. H. Pommer on the occasion of his sixtieth birthday.

- Cf. eg. B. Zeeh, H. Metzger, "Methoden der Organischen Chemie (Houben-Weyl", (E. Müller, ed.), <u>10/1</u>, 1273 - 1279 (1971).
- 2. This name was coined by W. Traube, Ann. Chem., 300, 81 (1898).
- 3. Cf. A. Wohl, Chem. Ber., 27, 1432 (1894).
- 4. Cf. A. Angeli, ibid., 29, 1884 (1896); Gazz. Chim. Ital., 46/2, 67 (1916).
- 5. Experimental details will be given in the full paper (in preparation).
- 6. C. S. Marvel, <u>Org. Synth.</u>, <u>Coll. Vol.</u>, <u>1</u>, 177 (1948).
- 7. M. Pape, P. Raff, German Patent 1 543 376.
- 8. <u>2c</u> (b.p._{0.2}: 53 58 ^OC) was prepared from 4 methylcyclohexanone oxime (O. Wallach, <u>Ann. Chem., 346</u>, 249 (1906) via catalytical hydrogenation (cf. W. E. Rosen, M. J. Green, <u>J. Org. Chem., 28</u>, 2797 (1963) and nitrosation (cf. H. Metzger, German Patent 1 019 657). <u>All new compounds had correct elemental composition.</u>
- 9. Synthex P2₁ diffractometer, Cu K $_{\alpha}$ radiation, graphite monochromator.

- 10. Single crystals of $\underline{2a}$ (0.3 x 0.33 x 0.2 mm) and $\underline{2c}$ (0.45 x 0.3 x 0.2 mm) were obtained by sublimation (0.2 torr, 20 °C). $\underline{2a}$ crystallizes in the orthorhombic space group P2₁2₂2₁; a = 485.02(2) pm, b = 1056.4(1) pm, \overline{c} = 1221.2(1) pm, Z = 4. The intensities of 769 independent reflections were collected (2 of them with $I \leq 2\sigma_{I}$ were not included in the refinement) with $\Theta/2\Theta$ scans and analyzed by a Lehmann-Larson algorithm. $\underline{2c}$ yielded crystals in the monoclinic space group P2₁/c; a = 1162.7(2) pm, b = 536.8(1) pm, \overline{c} = 1379.9(3) pm, β = 105.80(2) °, Z = 4. 1041 independent reflections (87 with $I \leq 2\sigma_{I}$) were measured and analyzed a above. 2b yielded twinned crystals only.
- 11. So far, the inadequate stability of the isonitramines has hampered structure elucidation by X-ray structure analysis; cf. J. H. Bryden, <u>Acta Crystallogr., 12</u>, 581 (1959).
- 12. The hydroxyl hydrogen (H(2) in the Figure) appeared with a density of 0.4 x $10^{-6} e \text{ pm}^{-3}$ (spurious maxima $\leq 0.3 \text{ x } 10^{-6} \text{ e pm}^{-3}$) in <u>2a</u> and with 0.5 x $10^{-6} \text{ e pm}^{-3}$ ($\leq 0.2 \text{ x } 10^{-6} \text{ e pm}^{-3}$) in <u>2c</u>.
- 13. $R_W = 0.046$ with $g = 0.000\ 065\ (2a)$ and $R_W = 0.059$ with $g = 0.000\ 06\ (2c)$. $R_W = \Sigma W \frac{1/2}{\Delta} \Delta / \Sigma W \frac{1/2}{F_0} |_{W}$ ith $W = 1/(\sigma^2_{(F_0)} + g F_0^2)$.
- 14. The standard deviations of the bond lengths shown in the Figure are 0.2 0.3 ppm. The bond distances of <u>2c</u> have been corrected for molecular thermal motions according to V. Schomaker, K. N. Trueblood, <u>Acta Crystallogr.</u>, <u>Sect. B.</u>, <u>24</u>, 63 (1968).
- 15. In <u>1</u> a N(2) O(2) bond distance might be expected similar to that found in dimethylnitrosamine (126.0(6) pm; B. Krebs, J. Maudt, <u>Chem. Ber.</u>, <u>108</u>, 1130 (1975)); cf. also P. Rademacher, R. Stølevik, W. Lüttke, <u>Ang. Chem.</u>, <u>80</u>, 842 (1968).
- 16. <u>3</u> (m.p.: 92 3 ^oC) was prepared from the potassium salt of <u>2b</u> by reaction with tosyl chloride in DMSO.
- 17. 4 (b.p.₁₄: 124 °C) and 6 (b.p._{0.1}: 80 °C) were obtained by decomposing the tosylates of <u>2b</u> and <u>2c</u>, respectively, with sodium methoxide; cf. J. P. Freeman, L. D. Lillwitz, <u>J. Org.</u> <u>Chem.</u>, <u>35</u>, 3107 (1970). <u>5</u> (b.p._{0.5}: 80 2) was prepared from cyclohexanone oxime via 0 - methylation, catalytical hydrogenation and nitrosation (cf. note 8.). A mixture of <u>7</u> and <u>6</u> was obtained from the silver salt of <u>2c</u> by methylation with methyl iodide in diethyl ether (cf. note 2).
- 18. Zeiss Spektralphotometer DMR 22.
- 19. 7 has not yet been obtained in a pure state.
- 20. Cf. C.N.R. Rao, K. R. Bhaskar, "The Chemistry of the Nitro- and Nitroso Groups" (H. Feuer, ed.) part 1, pp. 152 155 (1969).
- 21. R. N. Jones, G. D. Thorn, Can. J. Res., Sect. B, 27, 828 (1949)
- 22. M. Piskorz, T. Urbański, Bull. Acad. Pol. Sci., Sér. Sci. Chim., 11, 597 (1963).
- 23. R. N. Haszeldine, J. Jander, J. Chem. Soc., 691 (1954).
- 24. Bruker WH-270.
- 25. Conformational analysis of cyclohexane derivatives by NMR spectroscopy is discussed by H. Feltkamp, N. C. Franklin, <u>Ang. Chem.</u>, <u>77</u>, 798 (1965); cf. E. L. Eliel, <u>Ang. Chem.</u>, <u>77</u>. 784 (1965).
- 26. In solution the monosubstituted cyclohexane derivatives <u>2a</u>, <u>4</u> and <u>6</u> should exist almost exclusively in the (1e) conformation (see note 25.).

(Received in Gormany 29 March 1979)